Expansions in Laguerre Polynomials of Negative Order

E. Kochneff

Eastern Washington University, Cheney, Washington 99004
Communicated by Alphonse P. Magnus
Received March 5, 1993; accepted in revised form July 6, 1994

We discuss pointwise convergence for expansions of Laguerre polynomials of order $\alpha \leqslant-1$. 1995 Academic Press. Inc.

1. Introduction

For $\alpha>-1$, the Laguerre polynomials $\left\{L_{m}^{x}(x)\right\}$ are defined by orthogonality:

$$
\begin{align*}
& \int_{0}^{\infty} L_{k}^{\alpha}(x) L_{m}^{\alpha}(x) e^{-x} x^{\alpha} d x \\
& \quad=\frac{\Gamma(k+\alpha+1)}{k!} \delta_{k, m}, \quad k, m=0,1, \ldots, \tag{1.1}
\end{align*}
$$

and the condition that $L_{m}^{\alpha}(x)$ is a polynomial of degree m with coefficient of x^{m} equal to $(-1)^{m} / m!$.

They are given explicitly by the formula:

$$
\begin{equation*}
L_{m}^{\alpha}(x)=\sum_{j=0}^{m} \frac{\Gamma(m+\alpha+1)}{\Gamma(j+\alpha+1)} \frac{(-1)^{j} x^{j}}{j!(m-j)!}, \quad m=0,1, \ldots \tag{1.2}
\end{equation*}
$$

which extends the definition of Laguerre polynomials to all $\alpha \in C$. For a summary of the elementary properties of the Laguerre polynomials, see [4].

Denote by "f.p." Hadamard's finite part of an infinite integral, defined below. It is known for non-integer $\alpha<-1$ that [3]:

$$
\begin{align*}
& f . p . \int_{0}^{\infty} L_{k}^{\alpha}(x) L_{m}^{\alpha}(x) e^{-x} x^{x} d x=\frac{\Gamma(k+\alpha+1)}{k!} \delta_{k, m}, \\
& \quad k, m=0,1, \ldots, \tag{1.3}
\end{align*}
$$

Thus Laguerre expansions for non-integer $\alpha<-1$ may be defined by

$$
\begin{equation*}
f(x) \sim \sum_{k=0}^{\infty} a_{k} L_{k}^{\alpha}(x) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{k!}{\Gamma(k+\alpha+1)} f \cdot p \cdot \int_{0}^{\infty} f(y) L_{k}^{\alpha}(y) e^{-y} y^{\alpha} d y . \tag{1.5}
\end{equation*}
$$

In this paper we prove pointwise convergence of expansions of functions for which the difference of the function and a suitable polynomial satisfies a certain integrability condition. A simple example of such a function is $e^{-c x}$ for $c>-1 / 2$ which is known to have the expansion

$$
e^{-c x}=(1+c)^{-\alpha-1} \sum_{j=0}^{\infty}\left(\frac{c}{1+c}\right)^{j} L_{j}^{\alpha}(x)
$$

which converges pointwise for all $x \in R$ and all complex α.
Denoting by $K_{m}^{\alpha}(x, y)$ the kernel polynomial

$$
\begin{equation*}
K_{m}^{\alpha}(x, y)=\sum_{j=0}^{m} \frac{j!}{\Gamma(j+\alpha+1)} L_{j}^{\alpha}(x) L_{j}^{\alpha}(y) \tag{1.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{k=0}^{m} a_{k} L_{k}^{\alpha}(x)=f . p \cdot \int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y \tag{1.7}
\end{equation*}
$$

We will show for all non-integer $\alpha<-1$ that

$$
\begin{equation*}
f . p \cdot \int_{0}^{\infty} K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=1 \tag{1.8}
\end{equation*}
$$

and for all $\alpha \in R$ that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{a}^{b} K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=1, \quad 0<a<x<b<\infty \tag{1.9}
\end{equation*}
$$

We use (1.3)-(1.9) to prove two theorems about pointwise convergence. First we show for $\alpha \leqslant-1 / 2$ that if

$$
\begin{gather*}
\int_{0}^{1}|f(y)| y^{\alpha} d y<\infty \tag{1.10}\\
\int_{1}^{\infty}|f(y)| e^{-y / 2} y^{((\alpha / 2)+(5 / 12))} d y<\infty \tag{1.11}
\end{gather*}
$$

and for $x \in(0, \infty)$ if

$$
\frac{f(y)-f(x)}{y-x}
$$

is locally integrable on $(0, \infty)$ as a function of y then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{0}^{\infty} K_{m}^{\alpha}(x, y) f(y) e^{-y} y^{\alpha} d y=f(x) \tag{1.12}
\end{equation*}
$$

This theorem enables us to define Laguerre expansions also for $\alpha=-1$, $-2, \ldots$ for certain functions.
Secondly, we show for $n=0,1, \ldots,-(n+2)<\alpha<-(n+1)$ that if there exists a polynomial $P_{n}(x)$ of degree n such that

$$
\begin{equation*}
\int_{0}^{1}\left|f(y)-P_{n}(y)\right| y^{\alpha} d y<\infty \tag{1.13}
\end{equation*}
$$

if (1.11) holds, and for $x \in(0, \infty)$, if

$$
\frac{f(y)-f(x)}{y-x}
$$

is locally integrable on $(0, \infty)$ as a function of y then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} f \cdot p \cdot \int_{0}^{\infty} K_{m}^{\alpha}(x, y) f(y) e^{-y} y^{\alpha} d y=f(x) \tag{1.14}
\end{equation*}
$$

2. Generalized Orthogonality

DEFINITION 2.1. Let n be a non-negative integer, $\quad-(n+2)<\alpha<$ $-(n+1)$. Let $f(x)$ be a given function, and suppose there exists a polynomial $P_{n}(x)$ of degree n so that

$$
\begin{equation*}
\int_{0}^{\infty}\left|f(x)-P_{n}(x)\right| x^{\alpha} d x<\infty \tag{2.1}
\end{equation*}
$$

Then Hadamard's finite part (f.p.) of the integral

$$
\int_{0}^{\infty} f(x) x^{x} d x
$$

is defined by

$$
\begin{equation*}
f . p . \int_{0}^{\infty} f(x) x^{\alpha} d x=\int_{0}^{\infty}\left(f(x)-P_{n}(x)\right) x^{\alpha} d x \tag{2.2}
\end{equation*}
$$

For more information about this integral see [1].
Note that if $f(x), f^{\prime}(x), \ldots, f^{(n+1)}(x)$ are defined on $[0, a]$ for some $a>0$, if $f^{(n+1)}(x) \in L\left((0, a) ; x^{n+1+\infty} d x\right)$ and $f(x) \in L\left((a, \infty) ; x^{\alpha} d x\right)$ then Hadamard's integral will be well-defined provided we take as $P_{n}(x)$ the $n^{t h}$ Taylor polynomial of $f(x)$ centered at 0 .

Theorem 2.2 [3]. Let $\alpha<-1$ be non-integral. Then

$$
\begin{align*}
& f . p \cdot \int_{0}^{\infty} L_{k}^{\alpha}(x) L_{m}^{\alpha}(x) e^{-x} x^{\alpha} d x=\frac{\Gamma(k+\alpha+1)}{k!} \delta_{k, m}, \\
& \quad k, m=0,1, \ldots \tag{2.3}
\end{align*}
$$

Orthogonality holds in a restricted sense for $\alpha=-l, l=1,2, \ldots$ provided $k, m \geqslant l$. Since for all $k \geqslant l$ [4]:

$$
L_{k}^{(-n)}(x)=(-x)^{\prime} \frac{(k-l)!}{k!} L_{k-i}^{(l)}(x)
$$

we have for $k, m \geqslant 1$:

$$
\begin{aligned}
\int_{0}^{\infty} & L_{k}^{(-l)}(x) L_{m}^{(-l)}(x) e^{-x} x^{-l} d x \\
& =\frac{(k-l)!(m-l)!}{k!m!} \int_{0}^{\infty} L_{k-1}^{(l)}(x) L_{m-1}^{(l)}(x) e^{-x} x^{l} d x \\
& =\frac{(k-l)!}{k!} \delta_{k, m} .
\end{aligned}
$$

3. Expansions of Laguerre Polynomials

Suppose for some nonintegral $\alpha<-1$ we have

$$
f(x)=\sum_{j=0}^{\infty} a_{j} L_{j}^{x}(x)
$$

Then, assuming that the required integrals exist and that we can interchange summation and integration we have

$$
\begin{aligned}
f \cdot p \cdot \int_{0}^{\infty} f(x) L_{k}^{\alpha}(x) e^{-x} x^{\alpha} d x & =\sum_{j=0}^{\infty} a_{j} f p \cdot \int_{0}^{\infty} L_{j}^{x}(x) L_{k}^{x}(x) e^{-x} x^{x} d x \\
& =a_{k} \frac{\Gamma(k+\alpha+1)}{k!}
\end{aligned}
$$

so that

$$
\begin{equation*}
a_{k}=\frac{k!}{\Gamma(k+\alpha+1)} f \cdot p \cdot \int_{0}^{\infty} f(x) L_{k}^{x}(x) e^{-x} x^{\alpha} d x, \quad k=0,1, \ldots \tag{3.1}
\end{equation*}
$$

In particular, if $f(x)$ is a polynomial then the coefficients of its Laguerre expansion are given by (3.1).

On the other hand, suppose for a given function $f(x)$ that the integrals in (3.1) all exist. Denote by $S_{m}(x)$ the $m^{t h}$ partial sum

$$
\begin{equation*}
S_{m}(x)=\sum_{j=0}^{m} a_{j} L_{j}^{\alpha}(x) \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{aligned}
S_{m}(x) & =\sum_{j=0}^{m}\left(\frac{j!}{\Gamma(j+\alpha+1)} f \cdot p \cdot \int_{0}^{\infty} f(y) L_{j}^{\alpha}(y) e^{-y} y^{\alpha} d y\right) L_{j}^{\alpha}(x) \\
& =f \cdot p \cdot \int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y
\end{aligned}
$$

where for all $\alpha \in R$

$$
\begin{align*}
K_{m}^{\alpha}(x, y) & =\sum_{j=0}^{m} \frac{j!}{\Gamma(j+\alpha+1)} L_{j}^{\alpha}(x) L_{j}^{\alpha}(y) \\
& =\frac{(m+1)!}{\Gamma(m+\alpha+1)} \frac{L_{m}^{\alpha}(x) L_{m+1}^{\alpha}(y)-L_{m+1}^{\alpha}(x) L_{m}^{\alpha}(y)}{x-y} \\
& =\frac{(m+1)!}{\Gamma(m+\alpha+1)} \frac{L_{m+1}^{\alpha}(x) L_{m+1}^{\alpha-1}(y)-L_{m+1}^{\alpha}(y) L_{m+1}^{\alpha-1}(x)}{x-y} \tag{3.3}
\end{align*}
$$

see [4], p. 266. If $f(x)$ is a polynomial of degree k then

$$
\begin{equation*}
f(x)=f . p \cdot \int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y, \quad m=k, k+1, \ldots \tag{3.4}
\end{equation*}
$$

In particular by taking $f(x)=1$ we obtain

$$
\begin{equation*}
f . p . \int_{0}^{\infty} K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=1, \quad m=0,1, \ldots \tag{3.5}
\end{equation*}
$$

The situation for $\alpha=-l, l=1,2, \ldots$, is similar. If

$$
f(x)=\sum_{j=l}^{\infty} a_{j} L_{j}^{(-f)}(x)
$$

then formally for $k \geqslant l$ we have

$$
\begin{aligned}
\int_{0}^{\infty} f(x) L_{k}^{(-l)}(x) e^{-x} x^{-l} d x & =\sum_{j=1}^{\infty} a_{j} \int_{0}^{\infty} L_{j}^{(-l)}(x) L_{k}^{(-l)}(x) e^{-x} x^{-l} d x \\
& =a_{k} \frac{\Gamma(k-l+1)}{k!}
\end{aligned}
$$

Furthermore, if

$$
S_{m}(x)=\sum_{j=1}^{m} a_{j} L_{j}^{(-i)}(x), \quad m \geqslant l
$$

then

$$
S_{m}(x)=\int_{0}^{\infty} f(y) K_{m}^{(-l)}(x, y) e^{-y} y^{-1} d y, \quad m \geqslant l
$$

Theorem 3.1. Let $0<a<x<b<\infty$. Then for all $\alpha \in R$ we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{a}^{b} K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=1 \tag{3.6}
\end{equation*}
$$

For the proof of Theorem 3.1, we will need the following intermediate results.

Lemma 3.2 [5]. Let $[a, b] \subset(0, \infty)$ and fix $x \in(a, b)$. If $R_{m}(x, y)$, $a \leqslant y \leqslant b, m=1,2, \ldots$, satisfy $\left|R_{m}(x, y)\right| \leqslant C$ and $\left|\frac{d}{d y} R_{m}(x, y)\right| \leqslant C m^{1 / 2}$ for some constant C independent of y and m, if $R_{m}(x, y)$ have continuous derivatives in y, and if $R_{m}(x, y)$ vanish for $y=x$ we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m^{1 / 2}} \int_{a}^{b} \frac{R_{m}(x, y)}{x-y} d y=0 \tag{3.7}
\end{equation*}
$$

Lemma 3.3 (Fejer's Formula, [4, p. 198]). For all $\alpha \in R$ and $x>0$

$$
\begin{align*}
L_{m}^{\alpha}(x)= & \pi^{(-1 / 2)} m^{((\alpha / 2)-(1 / 4))} e^{x / 2} x^{(-(\alpha / 2)-(1 / 4))} \\
& \times\left(\cos \left\{2(m x)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\}+\frac{\theta_{m, x}(x)}{m^{1 / 2}}\right) \tag{3.8}
\end{align*}
$$

where $\theta_{m, x}(x)$ is uniformly bounded for $x \in[a, b], 0<a<b<\infty$, as $m \rightarrow \infty$.

Lemma 3.4. For any fixed a and $b, 0<a<b<\infty$, there exists a constant C independent of x and m such that

$$
\begin{equation*}
\left|\frac{d}{d x} \theta_{m, x}(x)\right| \leqslant C m^{1 / 2}, \quad a \leqslant x \leqslant b . \tag{3.9}
\end{equation*}
$$

Proof. Write $f_{x}(x)=\pi^{-1 / 2} e^{x / 2} x^{(-\{\alpha / 2)-(1 / 4))}$ and $\rho_{m, \alpha}(x)=\cos \left\{2(m x)^{1 / 2}-\right.$ $\left.\frac{2 \alpha+1}{4} \pi\right\}$. Note that $f_{\alpha+1}=x^{-1 / 2} f_{\alpha}$ and $\rho_{m, \alpha}^{\prime}=-m^{1 / 2} \rho_{m, x+1} / x^{1 / 2}$. Differentiating Fejer's formula we obtain

$$
\begin{aligned}
& \frac{d}{d x} L_{m}^{\alpha}(x) \\
&= m^{((\alpha / 2)-(1 / 4)}\left[f_{\alpha}^{\prime}(x)\left(\rho_{m, \alpha}(x)+\frac{\theta_{m, \alpha}(x)}{m^{1 / 2}}\right)-f_{\alpha}(x)\right. \\
&\left.\times\left(\frac{m^{1 / 2}}{x^{1 / 2}} \rho_{m, \alpha+1}(x)-\frac{\theta_{m, \alpha}^{\prime}(x)}{m^{1 / 2}}\right)\right] \\
&= m^{(1(x / 2)-(1 / 4)} f_{\alpha}^{\prime}(x)\left(\rho_{m, x}(x)+\frac{\theta_{m, \alpha}(x)}{m^{1 / 2}}\right) \\
&-m^{((\alpha / 2)+(1 / 4))} f_{\alpha+1}(x) \rho_{m, x+1}(x) \\
&+m^{((\alpha / 2)-(1 / 4)} f_{\alpha}(x) \frac{\theta_{m, \alpha}^{\prime}(x)}{m^{1 / 2}} \\
&= m^{((\alpha / 2)-(1 / 4))} f_{\alpha}^{\prime}(x)\left(\rho_{m, \alpha}(x)+\frac{\theta_{m, x}(x)}{m^{1 / 2}}\right) \\
&-\left(L_{m}^{\alpha+1}(x)-m^{((\alpha / 2)+(1 / 4))} f_{\alpha+1}(x) \frac{\theta_{m, \alpha+1}(x)}{m^{1 / 2}}\right) \\
&+m^{((\alpha / 2)-(1 / 4))} f_{\alpha}(x) \frac{\theta_{m, x}^{\prime}(x)}{m^{1 / 2}} .
\end{aligned}
$$

Thus since [4]:

$$
\frac{d}{d x} L_{m}^{\alpha}(x)=-L_{m-1}^{\alpha+1}(x) \quad \text { and } \quad L_{m}^{\alpha}(x)=L_{m}^{\alpha+1}(x)-L_{m-1}^{\alpha+1}(x)
$$

we have

$$
\begin{aligned}
L_{m}^{\alpha}(x)= & m^{((x / 2)-(1 / 4))}\left[f_{\alpha}^{\prime}(x)\left(\rho_{m, \alpha}(x)+\frac{\theta_{m, \alpha}(x)}{m^{1 / 2}}\right)\right. \\
& \left.+f_{\alpha+1}(x) \theta_{m, \alpha+1}(x)+f_{\alpha}(x) \frac{\theta_{m, \alpha}^{\prime}(x)}{m^{1 / 2}}\right]
\end{aligned}
$$

Since $L_{m}^{\alpha}(x)=O\left(m^{((x / 2)-(1 / 4))}\right)$ uniformly in $[a, b]$ and since $\rho_{m, \alpha}(x)$, $\theta_{m, x}(x)$ and $\theta_{m, x+1}(x)$ are uniformly bounded for all m and $x \in[a, b]$, this proves the lemma.

Proof of Theorem 3.1. Let

$$
B_{m}=\frac{(m+1)!}{\Gamma(m+\alpha+1)}(m+1)^{\alpha-1}
$$

By Stirling's formula $\lim _{m \rightarrow \infty} B_{m}=1$.
Substituting Fejer's formula into

$$
K_{m}^{\alpha}(x, y)=\frac{(m+1)!}{\Gamma(m+\alpha+1)} \frac{L_{m+1}^{\alpha}(x) L_{m+1}^{\alpha-1}(y)-L_{m+1}^{\alpha}(y) L_{m+1}^{\alpha-1}(x)}{x-y}
$$

we obtain

$$
\begin{equation*}
K_{m}^{\alpha}(x, y)=B_{m} \frac{e^{(x+y / / 2}(x y)^{(-(\alpha / 2)-(1 / 4))}}{\pi(x-y)}\left(T_{m+1}(x, y)+\frac{U_{m+1}(x, y)}{(m+1)^{1 / 2}}\right) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{m}(x, y)= & y^{1 / 2} \cos \left\{2(m x)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\} \sin \left\{2(m y)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\} \\
& -x^{1 / 2} \cos \left\{2(m y)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\} \sin \left\{2(m x)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
U_{m}(x, y)= & \theta_{m, x}(x) y^{1 / 2}\left(\sin \left\{2(m y)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\}+\frac{\theta_{m, x-1}(y)}{m^{1 / 2}}\right) \\
& -\theta_{m, x}(y) x^{1 / 2}\left(\sin \left\{2(m x)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\}+\frac{\theta_{m, x-1}(x)}{m^{1 / 2}}\right) \\
& +y^{1 / 2} \theta_{m, \alpha-1}(y) \cos \left\{2(m x)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\} \\
& -x^{1 / 2} \theta_{m, \alpha-1}(x) \cos \left\{2(m y)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\}
\end{aligned}
$$

Note that $U_{m}(x, y) e^{-y / 2} y^{((x / 2)-(1 / 4))}$ satisfies the conditions of Lemma 3.2, so that

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \int_{a}^{b} K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y= & \frac{e^{x / 2} x^{(-(\alpha / 2)-(1 / 4))}}{\pi} \\
& \times \lim _{m \rightarrow \infty}\left(\int_{a}^{b} \frac{T_{m}(x, y)}{x-y} e^{-y / 2} y^{((\alpha / 2)-(1 / 4))} d y\right. \\
& \left.+\frac{1}{m^{1 / 2}} \int_{a}^{b} \frac{U_{m}(x, y)}{x-y} e^{-y / 2} y^{((x / 2)-(1 / 4))} d y\right) \\
= & \frac{e^{x / 2} x^{(-(x / 2)-(1 / 4))}}{\pi} \\
& \times \lim _{m \rightarrow \infty} \int_{a}^{b} \frac{T_{m}(x, y)}{x-y} e^{-y / 2} y^{((\alpha / 2)-(1 / 4))} d y
\end{aligned}
$$

Let us write

$$
\begin{aligned}
\frac{T_{m}(x, y)}{x-y}= & \frac{-\cos \left\{2(m x)^{1 / 2}-\frac{z x+1}{4} \pi\right\} \sin \left\{2(m y)^{1 / 2}-\frac{2 x+1}{4} \pi\right\}}{y^{1 / 2}+x^{1 / 2}} \\
& +x^{1 / 2} \frac{\sin \left(2 m^{1 / 2}\left(x^{1 / 2}-y^{1 / 2}\right)\right)}{x-y} \\
= & T_{1, m}(x, y)+x^{1 / 2} T_{2, m}(x, y) .
\end{aligned}
$$

By the Riemann-Lebesgue lemma,

$$
\lim _{m \rightarrow \infty} \int_{a}^{b} T_{1, m}(x, y) e^{-y / 2} y^{((\alpha / 2)-(1 / 4))} d y=0
$$

Let $\phi(y)=e^{-y / 2} y^{((x / 2)-(1 / 4))}$, fix $\delta>0$ so that $(x-\delta, x+\delta) \subset(a, b)$ and fix $\eta>0$ such that $(-\eta, \eta) \subset(\sqrt{x-\delta}-\sqrt{x}, \sqrt{x+\delta}-\sqrt{x})$. Again using the Riemann-Lebesgue lemma we have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \int_{a}^{b} T_{2 . m}(x, y) \phi(y) d y \\
&=\lim _{m \rightarrow \infty} \int_{x-\delta}^{x+\delta} \frac{\sin (2 \sqrt{m}(\sqrt{x}-\sqrt{y}))}{x-y} \phi(y) d y \\
& \quad=\lim _{m \rightarrow \infty} \int_{\sqrt{x-\delta}-\sqrt{x}}^{\sqrt{x+\delta}-\sqrt{x}} \frac{\sin (2 \sqrt{m} v)}{v(v+2 \sqrt{x})}(2 v+2 \sqrt{x}) \phi\left((v+\sqrt{x})^{2}\right) d v
\end{aligned}
$$

$$
\begin{aligned}
= & \lim _{m \rightarrow \infty}\left(\int_{\sqrt{x-\delta}-\sqrt{x}}^{\sqrt{x+\delta}-\sqrt{x}} \frac{\sin (2 \sqrt{m} v)}{(v+2 \sqrt{x})} \phi\left((v+\sqrt{x})^{2}\right) d v\right. \\
& \left.+\int_{\sqrt{x-\delta}-\sqrt{x}}^{\sqrt{x+\delta}-\sqrt{x}} \frac{\sin (2 \sqrt{m} v)}{v} \phi\left((v+\sqrt{x})^{2}\right) d v\right) \\
= & \lim _{m \rightarrow \infty} \int_{-\eta}^{\eta} \frac{\sin (2 \sqrt{m} v)}{v} \phi\left((v+\sqrt{x})^{2}\right) d v .
\end{aligned}
$$

Note that since

$$
\lim _{m \rightarrow \infty} \int_{-\eta}^{\eta} \frac{\sin (2 \sqrt{m} v)}{v} d v=\lim _{m \rightarrow \infty} \int_{-2 \eta \sqrt{m}}^{2 \eta \sqrt{m}} \frac{\sin u}{u} d u=\pi
$$

we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} & \int_{-\eta}^{\eta} \frac{\sin (2 \sqrt{m} v)}{v} \phi\left((v+\sqrt{x})^{2}\right) d v-\pi \phi(x) \\
& =\lim _{m \rightarrow \infty} \int_{-\eta}^{\eta} \sin (2 \sqrt{m} v) \frac{\phi\left((v+\sqrt{x})^{2}\right)-\phi(x)}{v} d v=0 .
\end{aligned}
$$

Therefore

$$
\lim _{m \rightarrow \infty} \int_{a}^{b} T_{2, m}(x, y) e^{-y / 2} y^{((x / 2)-(1 / 4))} d y=\pi e^{-x / 2} x^{((\alpha / 2)-(1 / 4))}
$$

This completes the proof of the theorem.
Theorem 3.5. Let $\alpha \leqslant-1 / 2$. Suppose

$$
\begin{gather*}
\int_{0}^{1}|f(y)| y^{\alpha} d y<\infty \tag{3.11}\\
\int_{1}^{\infty}|f(y)| e^{-y / 2} y^{((\alpha / 2)+(\delta / 12))} d y<\infty . \tag{3.12}
\end{gather*}
$$

Then for all points $x \in(0, \infty)$ for which the function

$$
\begin{equation*}
\frac{f(y)-f(x)}{y-x} \tag{3.13}
\end{equation*}
$$

is locally integrable on $(0, \infty)$ as a function of y we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{0}^{\infty} K_{m}^{\alpha}(x, y) f(y) e^{-y} y^{\alpha} d y=f(x) \tag{3.14}
\end{equation*}
$$

Proof. First observe that for any $[a, b] \subset(0, \infty)$ and $a<x<b$ we have

$$
\begin{aligned}
\limsup _{m \rightarrow \infty} & \left|\int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y-f(x)\right| \\
& =\limsup _{m \rightarrow \infty}\left|\int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y-f(x) \int_{a}^{b} K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y\right| \\
= & \limsup _{m \rightarrow \infty} \mid \int_{0}^{a} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y \\
& \quad+\int_{a}^{b}(f(y)-f(x)) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y \\
& \quad+\int_{b}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y \mid \\
= & \limsup _{m \rightarrow \infty}\left|I_{m, 1}+I_{m, 2}+I_{m, 3}\right|
\end{aligned}
$$

We will show that for any $\varepsilon>0$, there exist numbers a and b, $0<a<b<\infty$ so that

$$
\left|I_{m, 1}\right|+\left|I_{m, 3}\right|<\varepsilon
$$

uniformly in m. We will also show for any a and $b, 0<a<b<\infty$, that

$$
\lim _{m \rightarrow \infty} I_{m, 2}=0
$$

Hence, we will have

$$
\limsup _{m \rightarrow \infty}\left|\int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y-f(x)\right|<\varepsilon
$$

Since ε can be chosen arbitrarily small, this will prove the theorem.
We first consider $I_{m .1}$. For any fixed number w, if $0 \leqslant x \leqslant w, \alpha \leqslant-1 / 2$, we have ([4], p. 178)

$$
L_{m}^{\alpha}(x)=O\left(m^{((x / 2)-(1 / 4))}\right), \quad m \rightarrow \infty
$$

where the bound is uniform in x. Therefore for $0 \leqslant y \leqslant a$ and fixed $x>a$ we have

$$
\begin{aligned}
K_{m}^{\alpha}(x, y)= & O\left(m^{1-x}\right)\left(m^{(1 \alpha / 2)-(1 / 4))} m^{(1(x-1) / 2)-(1 / 4)}\right. \\
& \left.+m^{((x-1) / 2)-(1 / 4)} m^{((\alpha / 2)-(1 / 4))}\right)=O(1)
\end{aligned}
$$

uniformly in y. Therefore

$$
\left|I_{m, 1}\right| \leqslant \int_{0}^{a}|f(y)| K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=O(1) \int_{0}^{a}|f(y)| e^{-y} y^{\alpha} d y
$$

which can be made arbitrarily small independently of m by taking a sufficiently small.

Next, we consider $I_{m, 3}$. For $\alpha \in R$, and for any fixed number $c>0$ and all $x \geqslant c$, we have

$$
L_{m}^{\alpha}(x)=O\left(m^{(\alpha / 2)-(1 / 4))}\right) e^{x / 2} x^{(-(\alpha / 2)-(1 / 12))}, \quad m \rightarrow \infty,
$$

uniformly in x, see [4], p. 241. Therefore for all $y \geqslant b$ and fixed $x<b$ we have

$$
\begin{aligned}
K_{m}^{x}(x, y)= & O\left(m^{1-x}\right)\left(m^{(1 x / 2)-(1 / 4)} m^{((\alpha-1) / 2)-(1 / 4)} e^{v / 2} y^{(-(x-1) / 2)-(1 / 12)}\right. \\
& \left.+m^{((x-1) / 2)-(1 / 4)} m^{((x / 2)-(11 / 4))} e^{y / 2} y^{(-(\alpha / 2))-(1 / 12)}\right) \\
= & O(1) e^{y / 2}\left(y^{1-(x / 2))+(5 / 12)}+y^{1-(x / 2))-(1 / 12)}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|I_{m, 3}\right| \leqslant & \int_{b}^{\infty}\left|f(y) K_{m}^{\alpha}(x, y)\right| e^{-y} y^{x} d y=O(1) \\
& \times \int_{b}^{\infty}|f(y)| e^{-y / 2} y^{((\alpha / 2)+(5 / 12))} d y .
\end{aligned}
$$

Therefore, $I_{m, 3}$ can also be made arbitrarily small independently of m by taking b sufficiently large.
Finally we consider $I_{m, 2}$. Let $\phi(y)$ be a locally integrable function. Then by Fejer's formula

$$
\begin{aligned}
& \int_{a}^{b} \phi(y) L_{m}^{x}(y) e^{-y} y^{x} d y \\
&= \pi^{-1 / 2} m^{(1 x / 2)-(1 / 4)}\left(\int_{a}^{b} \phi(y) \cos \left\{2(m y)^{1 / 2}-\frac{2 \alpha+1}{4} \pi\right\}\right. \\
&\left.\times e^{-y / 2} y^{((\alpha / 2)-(1 / 4))} d y+\frac{1}{m^{1 / 2}} \int_{a}^{b} \phi(y) \theta_{m \cdot x}(y) e^{-y / 2} y^{((x / 2)-(1 / 4))}\right) d y \\
&= o\left(m^{((x / 2)-(1 / 4))}, \quad m \rightarrow \infty\right.
\end{aligned}
$$

Therefore, with

$$
\phi(y)=\frac{f(y)-f(x)}{x-y}
$$

we have

$$
\begin{aligned}
I_{m, 2}= & \int_{a}^{b}(f(y)-f(x)) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y \\
= & O\left(m^{1-\alpha}\right) \int_{a}^{b} \phi(y)\left(L_{m+1}^{\alpha}(x) L_{m+1}^{\alpha-1}(y)-L_{m+1}^{\alpha}(y) L_{m+1}^{\alpha-1}(x)\right) e^{-y} y^{\alpha} d y \\
= & O\left(m^{1-\alpha}\right)\left(m^{((\alpha / 2)-(1 / 4))} \int_{a}^{b} \phi(y) L_{m+1}^{\alpha-1}(y) e^{-y} y^{\alpha} d y\right) \\
& +m^{((\alpha-1) / 2)-(1 / 4)} \int_{a}^{b} \phi(y) L_{m+1}^{\alpha}(y) e^{-y} y^{\alpha} d y \\
= & o(1), \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of the theorem.
Corollary 3.6. Let $\alpha \leqslant-1 / 2$. Suppose there exists a polynomial $P(x)$ such that

$$
\begin{equation*}
\int_{0}^{1}|f(y)-P(y)| y^{\alpha} d y<\infty \tag{3.15}
\end{equation*}
$$

and suppose also that

$$
\begin{equation*}
\int_{1}^{\infty}|f(y)| e^{-y / 2} y^{((\alpha / 2)+(5 / 12))} d y<\infty . \tag{3.16}
\end{equation*}
$$

Furthermore, suppose that $x \in(0, \infty)$ is a point for which

$$
\begin{equation*}
\frac{f(y)-f(x)}{y-x} \tag{3.17}
\end{equation*}
$$

is locally integrable on $(0, \infty)$ as a function of y. Then f has an expansion in Laguerre polynomials converging at x to $f(x)$.

Proof. Suppose $P(x)$ is of degree N. There exist constants b_{j}, $j=0,1, \ldots, N$ so that for all $x \in R$:

$$
P(x)=\sum_{j=0}^{N} b_{j} L_{j}^{\alpha}(x)
$$

Let a_{j} be the Laguerre coefficients of $f(x)-P(x)$ defined by

$$
a_{j}=\frac{j!}{\Gamma(j+\alpha+1)} \int_{0}^{\infty}(f(y)-P(y)) L_{j}^{\alpha}(y) e^{-y} y^{\alpha} d y
$$

We have

$$
\sum_{j=0}^{m} a_{j} L_{j}^{\alpha}(x)=\int_{0}^{\infty}(f(y)-P(y)) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y
$$

By Theorem 3.5,

$$
\lim _{m \rightarrow \infty} \int_{0}^{\infty}(f(y)-P(y)) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=f(x)-P(x)
$$

Thus

$$
\lim _{m \rightarrow \infty}\left(\sum_{j=0}^{N} b_{j} L_{j}^{x}(x)+\sum_{j=0}^{m} a_{j} L_{j}^{x}(x)\right)=f(x)
$$

Theorem 3.7. Let $-(n+2)<\alpha<-(n+1), n=0,1, \ldots$ Suppose there exists a polynomial $P_{n}(x)$ of degree n such that

$$
\begin{equation*}
\int_{0}^{1}\left|f(y)-P_{n}(y)\right| y^{x} d y<\infty \tag{3.18}
\end{equation*}
$$

and suppose also that

$$
\begin{equation*}
\int_{1}^{\infty}|f(y)| e^{-y / 2} y^{((\alpha / 2)+(5 / 12))} d y<\infty \tag{3.19}
\end{equation*}
$$

Then, if $x \in(0, \infty)$ is a point for which

$$
\begin{equation*}
\frac{f(y)-f(x)}{y-x} \tag{3.20}
\end{equation*}
$$

is locally integrable on $(0, \infty)$ as a function of y we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} f \cdot p \cdot \int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=f(x) \tag{3.21}
\end{equation*}
$$

Proof. Let $g(x)=f(x)-P_{n}(x)$. By Theorem 3.5,

$$
\lim _{m \rightarrow \infty} \int_{0}^{\infty} g(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y=g(x)
$$

On the other hand, for all $m \geqslant n$ we have

$$
P_{n}(x)=f . p \cdot \int_{0}^{\infty} P_{n}(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y
$$

Therefore

$$
\begin{aligned}
\lim _{m \rightarrow \infty} & \text { f.p. } \int_{0}^{\infty} f(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y \\
= & \lim _{m \rightarrow \infty}\left(\int_{0}^{\infty}\left(f(y)-P_{n}(y)\right) K_{m}^{\alpha}(x, y) e^{-y^{\alpha}} y^{\alpha} d y\right. \\
& \left.\quad+f . p \cdot \int_{0}^{\infty} P_{n}(y) K_{m}^{\alpha}(x, y) e^{-y} y^{\alpha} d y\right) \\
= & f(x)
\end{aligned}
$$

References

1. J. Hadamard, "Lectures on Cauchy's Problem in Linear Partial Differential Equations," Dover, New York, 1952.
2. A. M. Krall, Laguerre polynomial expansions in indefinite inner product spaces, J. Math. Anal. Appl. 70 (1979), 267-279.
3. R. D. Morton and A. M. Krall, Distributional weight functions for orthogonal polynomials, SIAM J. Math. Anal. 9 (1978), 604-626.
4. G. Szego, "Orthogonal Polynomials," 4th ed, AMS Colloq. Publ. Vol. 23, Amer. Math. Soc., Providence, RI, 1975.
5. J. V. Uspensky, On the developent of arbitrary functions in series of Hermite's and Laguerre's polynomials, Ann. Math. 28 (1927), 593-619.
